{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Getting started with dotter\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Installation\n", "\n", "To install the dotter package, you will need:\n", "\n", "- a Python 3.6 installation. We recommend [Anaconda](https://www.anaconda.com/download/)\n", "- To install the development branch you will need [git](https://git-scm.com/downloads)\n", "\n", "### Install stable version\n", "There is no stable release yet. \n", "\n", "### Install development version\n", "The current development branch of dotter can be installed from GitHub using `pip`:\n", "\n", "```bash\n", " pip install git+https://github.com/kdberends/dotter\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Notebook tutorials\n", "\n", "The dotter model is a basic quasi-stationary hydraulic solver meant for quick (hydraulic) analysis. It has a build-in friction module that allows for basic simulation of vegetation growth and analysis of the effect on water levels. \n", "\n", "See the following examples to see \n", "\n", "- [Setting up your first simulation](basic_setup.ipynb)\n", "- [Analysis of vegetation growth, death](vegetation_growth.ipynb)\n", "- [Vegetation managament](vegetation_management.ipynb)\n", "- [Deterministic solving the inverse problem](inverse_problem.ipynb)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }